
 UNIT - III
Model based software architectures: A Management perspective and technical perspective.
Work Flows of the process: Software process workflows, Iteration workflows.
Check Points of The process

7. Model based software architecture

 7.1 ARCHITECTURE: A MANAGEMENT PERSPECTIVE
The most critical technical product of a software project is its architecture: the infrastructure,
control, and data interfaces that permit software components to cooperate as a system and
software designers to cooperate efficiently as a team. When the communications media
include multiple languages and intergroup literacy varies, the communications problem can
become extremely complex and even unsolvable. If a software development team is to be
successful, the inter project communications, as captured in the software architecture, must
be both accurate and precise

From a management perspective, there are three different aspects of architecture.
1. An architecture (the intangible design concept) is the design of a software system

this includes all engineering necessary to specify a complete bill of materials.
2. An architecture baseline (the tangible artifacts) is a slice of information across the

engineering artifact sets sufficient to satisfy all stakeholders that the vision
(function and quality) can be achieved within the parameters of the business case
(cost, profit, time, technology, and people).

3. An architecture description (a human-readable representation of an architecture,
which is one of the components of an architecture baseline) is an organized subset
of information extracted from the design set model(s). The architecture
description communicates how the intangible concept is realized in the tangible
artifacts.

The number of views and the level of detail in each view can vary widely.
The importance of software architecture and its close linkage with modern software
development processes can be summarized as follows:

 Achieving a stable software architecture represents a significant project milestone
at which the critical make/buy decisions should have been resolved.

 Architecture representations provide a basis for balancing the trade-offs between
the problem space (requirements and constraints) and the solution space (the
operational product).

 The architecture and process encapsulate many of the important (high-payoff or
high-risk) communications among individuals, teams, organizations, and
stakeholders.

 Poor architectures and immature processes are often given as reasons for project
failures.

 A mature process, an understanding of the primary requirements, and a
demonstrable architecture are important prerequisites for predictable planning.

 Architecture development and process definition are the intellectual steps that map
the problem to a solution without violating the constraints; they require human
innovation and cannot be automated.

 7.2 ARCHITECTURE: A TECHNICAL PERSPECTIVE
An architecture framework is defined in terms of views that are abstractions of the UML
models in the design set. The design model includes the full breadth and depth of
information. An architecture view is an abstraction of the design model; it contains only the

architecturally significant information. Most real-world systems require four views: design,
process, component, and deployment. The purposes of these views are as follows:

 Design: describes architecturally significant structures and functions of the design
model

 Process: describes concurrency and control thread relationships among the design,
component, and deployment views

 Component: describes the structure of the implementation set
 Deployment: describes the structure of the deployment set

Figure 7-1 summarizes the artifacts of the design set, including the architecture views and
architecture description.
The requirements model addresses the behavior of the system as seen by its end users,
analysts, and testers. This view is modeled statically using use case and class diagrams, and
dynamically using sequence, collaboration, state chart, and activity diagrams.

 The use case view describes how the system's critical (architecturally significant)
use cases are realized by elements of the design model. It is modeled statically
using use case diagrams, and dynamically using any of the UML behavioral
diagrams.

 The design view describes the architecturally significant elements of the design
model. This view, an abstraction of the design model, addresses the basic structure
and functionality of the solution. It is modeled statically using class and object
diagrams, and dynamically using any of the UML behavioral diagrams.

 The process view addresses the run-time collaboration issues involved in executing
the architecture on a distributed deployment model, including the logical software
network topology (allocation to processes and threads of control), interprocess
communication, and state management. This view is modeled statically using
deployment diagrams, and dynamically using any of the UML behavioral
diagrams.

 The component view describes the architecturally significant elements of the
implementation set. This view, an abstraction of the design model, addresses the
software source code realization of the system from the perspective of the project's
integrators and developers, especially with regard to releases and configuration
management. It is modeled statically using component diagrams, and dynamically
using any of the UML behavioral diagrams.

 The deployment view addresses the executable realization of the system, including
the allocation of logical processes in the distribution view (the logical software
topology) to physical resources of the deployment network (the physical system
topology). It is modeled statically using deployment diagrams, and dynamically
using any of the UML behavioral diagrams.

Generally, an architecture baseline should include the following:
 Requirements: critical use cases, system-level quality objectives, and priority

relationships among features and qualities
 Design: names, attributes, structures, behaviors, groupings, and relationships of

significant classes and components
 Implementation: source component inventory and bill of materials (number, name,

purpose, cost) of all primitive components
 Deployment: executable components sufficient to demonstrate the critical use

cases and the risk associated with achieving the system qualities

8. Workflow of the process

8.1 SOFTWARE PROCESS WORKFLOWS
The term WORKFLOWS is used to mean a thread of cohesive and mostly sequential activi-
ties. Workflows are mapped to product artifacts There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win conditions for all
stakeholders

2. Environment workflow: automating the process and evolving the maintenance
environment

3. Requirements workflow: analyzing the problem space and evolving the
requirements artifacts

4. Design workflow: modeling the solution and evolving the architecture and design
artifacts

5. Implementation workflow: programming the components and evolving the
implementation and deployment artifacts

6. Assessment workflow: assessing the trends in process and product quality
7. Deployment workflow: transitioning the end products to the user

Figure 8-1 illustrates the relative levels of effort expected across the phases in each of the
top-level workflows.

Table 8-1 shows the allocation of artifacts and the emphasis of each workflow in each of the
life-cycle phases of inception, elaboration, construction, and transition.

 8.2 ITERATION WORKFLOWS

Iteration consists of a loosely sequential set of activities in various proportions, depending on
where the iteration is located in the development cycle. Each iteration is defined in terms of a
set of allocated usage scenarios. An individual iteration's workflow, illustrated in Figure 8-2,
generally includes the following sequence:

 Management: iteration planning to determine the content of the release and develop
the detailed plan for the iteration; assignment of work packages, or tasks, to the
development team

 Environment: evolving the software change order database to reflect all new
baselines and changes to existing baselines for all product, test, and environment
components

 Requirements: analyzing the baseline plan, the baseline architecture, and the

baseline requirements set artifacts to fully elaborate the use cases to be
demonstrated at the end of this iteration and their evaluation criteria; updating any
requirements set artifacts to reflect changes necessitated by results of this
iteration's engineering activities

 Design: evolving the baseline architecture and the baseline design set artifacts to
elaborate fully the design model and test model components necessary to
demonstrate against the evaluation criteria allocated to this iteration; updating
design set artifacts to reflect changes necessitated by the results of this iteration's
engineering activities

 Implementation: developing or acquiring any new components, and enhancing or
modifying any existing components, to demonstrate the evaluation criteria
allocated to this iteration; integrating and testing all new and modified
components with existing baselines (previous versions)

 Assessment: evaluating the results of the iteration, including compliance with the
allocated evaluation criteria and the quality of the current baselines; identifying
any rework required and determining whether it should be performed before
deployment of this release or allocated to the next release; assessing results to
improve the basis of the subsequent iteration's plan

 Deployment: transitioning the release either to an external organization (such as a
user, independent verification and validation contractor, or regulatory agency) or
to internal closure by conducting a post-mortem so that lessons learned can be
captured and reflected in the next iteration

Iterations in the inception and elaboration phases focus on management. Requirements, and
design activities. Iterations in the construction phase focus on design, implementation, and
assessment. Iterations in the transition phase focus on assessment and deployment. Figure 8-
3 shows the emphasis on different activities across the life cycle. An iteration represents the
state of the overall architecture and the complete deliverable system. An increment
represents the current progress that will be combined with the preceding iteration to from the
next iteration. Figure 8-4, an example of a simple development life cycle, illustrates the
differences between iterations and increments.

9. Checkpoints of the process

Three types of joint management reviews are conducted throughout the process:

1. Major milestones. These system wide events are held at the end of each
development phase. They provide visibility to system wide issues, synchronize
the management and engineering perspectives, and verify that the aims of the
phase have been achieved.

2. Minor milestones. These iteration-focused events are conducted to review the
content of an iteration in detail and to authorize continued work.

3. Status assessments. These periodic events provide management with frequent and
regular insight into the progress being made.

Each of the four phases-inception, elaboration, construction, and transition consists of one or
more iterations and concludes with a major milestone when a planned technical capability is
produced in demonstrable form. An iteration represents a cycle of activities for which there is
a well-defined intermediate result-a minor milestone-captured with two artifacts: a release
specification (the evaluation criteria and plan) and a release description (the results). Major
milestones at the end of each phase use formal, stakeholder-approved evaluation criteria and
release descriptions; minor milestones use informal, development-team-controlled versions of
these artifacts.
Figure 9-1 illustrates a typical sequence of project checkpoints for a relatively large project.

9.1 MAJOR MILESTONES

The four major milestones occur at the transition points between life-cycle phases. They can
be used in many different process models, including the conventional waterfall model. In an
iterative model, the major milestones are used to achieve concurrence among all stakeholders
on the current state of the project. Different stakeholders have very different concerns:

 Customers: schedule and budget estimates, feasibility, risk assessment,
requirements understanding, progress, product line compatibility

 Users: consistency with requirements and usage scenarios, potential for
accommodating growth, quality attributes

 Architects and systems engineers: product line compatibility, requirements changes,
trade-off analyses, completeness and consistency, balance among risk, quality, and
usability

 Developers: sufficiency of requirements detail and usage scenario descriptions, .
frameworks for component selection or development, resolution of development
risk, product line compatibility, sufficiency of the development environment

 Maintainers: sufficiency of product and documentation artifacts, understandability,
interoperability with existing systems, sufficiency of maintenance environment

 Others: possibly many other perspectives by stakeholders such as regulatory
agencies, independent verification and validation contractors, venture capital
investors, subcontractors, associate contractors, and sales and marketing teams

Table 9-1 summarizes the balance of information across the major milestones.

Life-Cycle Objectives Milestone
The life-cycle objectives milestone occurs at the end of the inception phase. The goal is to
present to all stakeholders a recommendation on how to proceed with development, including
a plan, estimated cost and schedule, and expected benefits and cost savings. A successfully
completed life-cycle objectives milestone will result in authorization from all stakeholders to
proceed with the elaboration phase.

Life-Cycle Architecture Milestone
The life-cycle architecture milestone occurs at the end of the elaboration phase. The primary
goal is to demonstrate an executable architecture to all stakeholders. The baseline
architecture consists of both a human-readable representation (the architecture document)
and a configuration-controlled set of software components captured in the engineering
artifacts. A successfully completed life-cycle architecture milestone will result in
authorization from the stakeholders to proceed with the construction phase.

The technical data listed in Figure 9-2 should have been reviewed by the time of the lifecycle
architecture milestone. Figure 9-3 provides default agendas for this milestone.

Initial Operational Capability Milestone
The initial operational capability milestone occurs late in the construction phase. The goals
are to assess the readiness of the software to begin the transition into customer/user sites and
to authorize the start of acceptance testing. Acceptance testing can be done incrementally
across multiple iterations or can be completed entirely during the transition phase is not
necessarily the completion of the construction phase.
Product Release Milestone
The product release milestone occurs at the end of the transition phase. The goal is to assess
the completion of the software and its transition to the support organization, if any. The
results of acceptance testing are reviewed, and all open issues are addressed. Software
quality metrics are reviewed to determine whether quality is sufficient for transition to the
support organization.

9.2 MINOR MILESTONES
For most iterations, which have a one-month to six-month duration, only two minor
milestones are needed: the iteration readiness review and the iteration assessment review.

 Iteration Readiness Review. This informal milestone is conducted at the start of
each iteration to review the detailed iteration plan and the evaluation criteria that
have been allocated to this iteration .

 Iteration Assessment Review. This informal milestone is conducted at the end of
each iteration to assess the degree to which the iteration achieved its objectives
and satisfied its evaluation criteria, to review iteration results, to review
qualification test results (if part of the iteration), to determine the amount of
rework to be done, and to review the impact of the iteration results on the plan for
subsequent iterations.

The format and content of these minor milestones tend to be highly dependent on the project
and the organizational culture. Figure 9-4 identifies the various minor milestones to be
considered when a project is being planned.

9.3 PERIODIC STATUS ASSESSMENTS
 Periodic status assessments are management reviews conducted at regular intervals
(monthly, quarterly) to address progress and quality indicators, ensure continuous attention to
project dynamics, and maintain open communications among all stakeholders.
Periodic status assessments serve as project snapshots. While the period may vary, the
recurring event forces the project history to be captured and documented. Status assessments
provide the following:
 A mechanism for openly addressing, communicating, and resolving management

issues, technical issues, and project risks

 Objective data derived directly from on-going activities and evolving product
configurations

 A mechanism for disseminating process, progress, quality trends, practices, and
experience information to and from all stakeholders in an open forum
Periodic status assessments are crucial for focusing continuous attention on the evolving

health of the project and its dynamic priorities. They force the software project manager to
collect and review the data periodically, force outside peer review, and encourage

dissemination of best practices to and from other stakeholders.

The default content of periodic status assessments should include the topics identified in
Table 9-2.

